当前位置:首页 > 实用范文

长方体和正方体的体积(多篇)

时间:2025-05-13 08:53:27
长方体和正方体的体积(多篇)

【摘要】长方体和正方体的体积(多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。

长方体和正方体的体积 篇一

教学目标 

(一)理解并掌握长方体和正方体体积的计算方法。

(二)能运用长、正方体的体积计算解决一些简单的实际问题。

(三)培养学生归纳推理,抽象概括的能力。

教学重点和难点

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学用具

教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

学具:1厘米3的立方体20块。

教学过程 设计

(一)复习准备

1.提问:什么是体积?

2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算。板书课题:。

(二)学习新课

1.长方体的体积。

(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:

教师:这些长方体有什么共同点?不同点?

问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

(因为它们都含有同样多的体积单位——12个1厘米3。)

教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

学生讨论后,师生共同归纳:

表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

学生说出摆法和体积后。请看电脑动画图像:

一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。

教师板书:

同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

学生操作,看电脑动画图像。教师板书:

3(厘米) 3(厘米) 2(厘米) 18(厘米3)

教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

学生口答后,老师用电脑图演示。然后板书:

5(厘米) 4(厘米) 3(厘米) 60(厘米3)

教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书:V=abh。

出示投影图:

(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。

答:它的体积是84厘米3。

练习:(投影出题,学生口答。)

一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

2.正方体体积。(1)请学生看电脑动画录像:

长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?

问:这个正方体的体积可以求出来吗?

学生口答,老师板书: 3×3×3=27(厘米3)。

投影出一个正方体图。(可以用翻页变换它的棱长。)

问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。

用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。

(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

学生口答,老师板书:53=5×5×5=125(分米3)。

答:体积是125分米3。

做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说计算方法和字母公式。

教师:请讨论计算方法相同还是不相同。

学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

(三)巩固反馈

1.口答填空。课本P35练习七:2,3。

2.口答填表:

3.判断正误并说明理由。

①0.23=0.2×0.2×0.2; ( )

②5x2=10x; ( )

③一个正方体棱长4分米,它的体积是:43=12(分米3); ( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )

(四)课堂总结及课后作业 

1.长方体的体积计算方法及公式。

正方体的体积计算方法及公式。

2.作业 :课本P35练习七:4,6。

课堂教学设计说明

本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程 中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。

新课教学共分两个部分:< ……此处隐藏4045个字……方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的体积=长×宽×高。

用字母表示:V = a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习——正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:V=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结

五、课后实践

做练习七的第5、7题。

长方体和正方体的体积 篇六

教学目标 

1.理解并掌握长方体和正方体体积的计算方法。

2.能运用长、正方体的体积计算解决一些简单的实际问题。

3.培养学生归纳推理,抽象概括的能力。

教学重点

长方体和正方体体积的计算方法。

教学难点 

长方体和正方体体积公式的推导。

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块。

学具:1立方厘米的立方体20块。

教学过程 

一、复习准备。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排。

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们

来学习怎样计算。

板书课题:

二、学习新课。

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高。

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体。同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积。

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米。

(二)正方体体积。

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习   棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式。

教师板书:正方体体积=棱长×棱长×棱长。

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米。

(三)讨论计算方法是否相同。

学生归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

三、巩固反馈。

1.口答填表。

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由。

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。( )

四、课堂总结。

今天这节课我们学习了新知识?谁来说一说?

五、课后作业 .

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米。它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计 .

你也可以在搜索更多本站小编为你整理的其他长方体和正方体的体积(多篇)范文。

《长方体和正方体的体积(多篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式