当前位置:首页 > 教学资源

初中数学《矩形》教案(精品多篇)

时间:2025-07-15 08:53:39
初中数学《矩形》教案(精品多篇)

【编辑】初中数学《矩形》教案(精品多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。

矩形的判定教学反思 篇一

本节课主要讲解的是矩形的性质与判定,本节课一共分为5个环节。在环节一知识回顾,由平行四边形入手,通过直观观察平行四边形与矩形内角的异同以及观察平行四边形与矩形的形状特点,这是落实核心价值观直观想象的过程,学生建立逻辑关系——平行四边形形状与边角大小之间的关系(直观想象是显性的,逻辑推理是隐形的)。在环节二探索活动一,利用橡皮筋套木框改变橡皮筋的松紧长短程度从而改变平行四边形的形状,观察平行四边形演变为矩形的过程,这是通过直观形象产生疑惑,有想法,进而升华为逻辑推理——改变平行四边形的对角线长短关系引起角的变化,这个变化过程中当一个角是直角时将平行四边形演变为矩形,这是落实显性的直观形象与隐性的逻辑推理的过程。

在环节三探索活动二,利用小芳画矩形的过程引入矩形的第二种判别方法,同样小芳画的过程是学生进行直观形象的过程,小芳画出来的学生观察确实是一个矩形,进而反问学生为什么是?这就是逻辑推理过程了,也是数学抽象的过程了,通过数学逻辑证明,得出确实是,从而抽象出——三个角都是直角的四边形是矩形。这个环节落实的数学学科核心素养显性的是直观想象,隐性的是逻辑推理,深入挖掘出数学抽象也是在这节课落实的素养。在环节四议一议中,只利用一根绳子,是否能判断出平行四边形、矩形、菱形?这是一个开放性的问题,也就是脱离角是否可以判断四边形的形状?直观形象这是首先落实到的核心素养,进而学生考虑四边形只考虑边的特点,不考虑角,是否可以判断,逻辑推理过程在这个过程中落实的淋漓尽致,其实质数学抽象——将绳子与边结合起来,这也是这个环节不可小视的核心素养。

经过本节课的讲解,深感落实数学学科核心素养在数学课堂中的重要作用,直观想象是本节课最显性的核心素养,而逻辑推理是在直观想象后升华的部分,数学抽象很多人或许会忽视,但会发现,在数学学科中,数学抽象虽然看不到也讲解不到,但在知识的升华过程中数学抽象才会产生质的飞跃,脱离现实数据抽象出数学真知。

初中数学《矩形》教案 篇二

一、教学目标

1、理解并掌握矩形的判定方法。

2、使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、重点、难点

1、重点:矩形的判定。

2、难点:矩形的判定及性质的综合应用。

三、例题的意图分析

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的。

四、课堂引入

1、什么叫做平行四边形?什么叫做矩形?

2、矩形有哪些性质?

3、矩形与平行四边形有什么共同之处?有什么不同之处?

4、事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法。

矩形判定方法1:对角钱相等的平行四边形是矩形。

矩形判定方法2:有三个角是直角的四边形是矩形。

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了。因为由四边形内角和可知,这时第四个角一定是直角。)

五、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的四边形是矩形;(×)

(2)有四个角是直角的`四边形是矩形;(√)

(3)四个角都相等的四边形是矩形;(√)

(4)对角线相等的四边形是矩形;(×)

(5)对角线相等且互相垂直的四边形是矩形;(×)

(6)对角线互相平分且相等的四边形是矩形;(√)

(7)对角线相等,且有一个角是直角的四边形是矩形;(×)

(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形。 (√)

指出:

(1)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论。

例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积。

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值。

解:∵四边形ABCD是平行四边形,∴ AO= AC,BO= BD。

∵ AO=BO,∴ AC=BD。

∴ ABCD是矩形(对角线相等的平行四边形是矩形)。

在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴ BC=(cm)。

例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H。求证:四边形EFGH是矩形。

分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明。

证明:∵四边形ABCD是平行四边形,∴ AD∥BC。

∴ ∠DAB+∠ABC=180°。

又AE平分∠DAB,BG平分∠ABC,∴ ∠EAB+∠ABG= ×180°=90°。

∴ ∠AFB=90°。

同理可证∠AED=∠BGC=∠CHD=90°。

∴四边形EFGH是平行四边形(有三个角是直角的四边形是矩形)。

六、随堂练习

1、(选择)下列说法正确的是()。

(A)有一组对角是直角的四边形一定是矩形

(B)有一组邻角是直角的四边形一定是矩形

(C)对角线互相平分的四边形是矩形

(D)对角互补的平行四边形是矩形

2、已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD到点E,使得DE=CD。连结AE,BE,则四边形ACBE为矩形。

七、课后练习

1、工人师傅做铝合金窗框分下面三个步骤进行:

⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;

⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理 ……此处隐藏4912个字……题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式

继续分解因式。

第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式。

第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式

,第四项与这一组再运用平方差公式分解因式。

把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运

用提公因式或分式法进行因式分解。在添括号时,要注意符号的变化。

这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式。

二、新课

例1把分解因式。

问:根据这个多项式的特点怎样分组才能达到因式分解的目的?

答:这个多项式共有四项,可以把其中的两项分为一组,所以有两种分解因式的方法。

解方法一

方法二

例2把分解因式。

问:观察这个多项式有什么特点?是否可以直接运用分组法进行因式分解?

答:这个多项式的各项都有公式因ab,可以先提取这个公因式,再设法运用分组法继续分解因式。

解:

=

=

=

=

例3把45m2-20ax2+20axy-5ay2分解因式。

分析:这个多项式的各项有公因式5a,先提取公因式,再观察余下的因式,可以按:一、三”分组原则进行分组,然后运用公式法分解因式。

解45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)

=5a[9m2-(4x2-4xy+y2)]

=5a[(3m2)-(2x-y) 2]

=5a(3m+2x-y)(3m-2x+y).

例4把2(a2-3mn)+a(4m-3n)分解因式。

分析:如果去掉多项式的括号,再恰当分组,就可用分组分解法分解因式了。

解2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an

=(2a2-3an)+(4am-6mn)

=a(2a-3n)+2m(2a-3n)

=(2a-3n)(a+2m).

指出:如果给出的。多项式中有因式乘积,这时可先进行乘法运算,把变形后的多项式按照分组原则,用分组分解法分解因式。

三、课堂练习

把下列各式分解因式:

(1)a2+2ab+b2-ac-bc;(2)a2-2ab+b2-m2-2mn-n2;

(3)4a2+4a-4a2b+b+1;(4)ax2+16ay2-a-8axy;

(5)a(a2-a-1)+1;(6)ab(m2+n2)+mn(a2+b2);

答案:

(1)(a+b)(a+b-c);(2)(a-b+m+m)(a-b-m-n);

(3)(2a+1)(2a+1-2ab+b);(4)a(x-4y+1)(x-4y-1);

(5)(a-1) 2 (a+1);? (6)(bm+an)(am+bn).

四、小结

1.把一个多项式因式分解时,如果多项式的各项有公因式,就先提出公因式,把原多项式变为这个公因式与另一个因式积的形式。如果另一个因式是四项(或四项以上)的多项式,再考虑用分组分解法因式分解。

2.如果已知多项式中含有因式乘积的项与其他项之和(或差)时(如例3),先去掉括号,把多项式变形后,再重新分组。

五、作业

1.把下列各式分解因式:

(1)x3y-xy3;(2)a4b-ab4;

(3)4x2-y2+2x-y;(4)a4+a3+a+1;

(5)x4y+2x3y2-x2y-2xy2;(6)x3-8y3-x2-2xy-4y2;

(7)x2+x-(y2+y);(8)ab(x2-y2)+xy(a2-b2).

2.已知x-2y=-2b=-4098,求2bx2-8bxy+8by2-8b的值。

答案:

1.(1)xy(x+y)(x-y);(2)ab(a-b)(a2+ab+b2);

(3)(2x-y)(2x+y+1);(4)(a+1) 2 (a2-a+1);

(5)xy(x+2y)(x+1)(x-1);(6)(x2+2xy+4y2)(x-2y-1);

(7)(x-y)(x+y+1);(8)(ax-by)(bx+ay).

2.原式=2b(x-2y+2)(x-2y-2)当x-2y=-2,b=-4098时,原式的值=0.

课堂教学设计说明

1.突出“通法”的作用。

对于含四项的多项式,可以根据所给的多项式的特点,常采取“二、二”分组或“一、三”分组的方法进行因式分解,这是运用分组法把多项式分解因式的通法,是带有规律性和程序性的解题思路,学生应切实掌握。安排例1的目的是:引导学生运用分组的通法把一个含有六项的多项式分解因式,促使学生能举一反三,触类旁通。

2.加强各种方法的纵横联系。

把分组分解法与提公因式法和公式法之间结合为一体,进行纵横联系,综合运用,考察学生掌握因式分解的方法和技能的状况是这节课教学设计的目标。通过讨论例3,引导学生综合应用三种方法把多项式分解因式,以开发学生解题思路的变通性和灵性活,对于启迪学生的思维和开阔学生的视野起到重要作用。

3.打通相反的思维过程。

因式分解与整式乘法是相反的变形,也是相反的思维过程,学生在学习多项式的因式分解时,也应当适当联系整式的乘法。安排例4,目的是引导学生认识到,在把多项式因式分解时,如果给出的多项式出现了有因式乘积的项,但又不能提取公因式,这时就需要进行乘法运算,把变形后的多项式重新分组,再分解因式,从而启发学生在学习数学时,应善于对数学知识和方法融汇贯通习惯于正向和逆向思维。

探究活动

系数为1的型的二次三项式同学们已经会分解因式了,那么二次项系数不是1的二次三项式怎么分解呢?如:

1.;2. .

有兴趣的同学可以模仿型式子的因式分解试着把上面两式分解因式,你能总结出规律吗?

答案:

1. ; 2. .

规律:二次项系数不是1的二次三项式分解因式时,若满足下列条件,则可将其分解为:

可分解为,即

可分解为,即

,,,满足,即

按斜线十字交叉相乘的积之和若与一次项系数相等,则可分解因式,

第一个因式由第一行的两个数组成

第二个因式由第二行的两个数组成

分解结果为:

你也可以在搜索更多本站小编为你整理的其他初中数学《矩形》教案(精品多篇)范文。

《初中数学《矩形》教案(精品多篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式